Presenting Profunctors

Gabriel Goren Roig¹² Emilio Minichiello³ Joshua Meyers³

¹Departamento de Matemática, Universidad de Buenos Aires, Argentina

²Instituto de Ciencias de la Computación (ICC), CONICET

³Conexus AI

Applied Category Theory 2024

• To compute with categories we need syntax.

- To compute with categories we need syntax.
- There is a canonical way to present small categories by generators and relations (and morphisms between them).

- To compute with categories we need syntax.
- There is a canonical way to present small categories by generators and relations (and morphisms between them).
- There is a canonical way to present **Set**-valued functors.

- To compute with categories we need syntax.
- There is a canonical way to present small categories by generators and relations (and morphisms between them).
- There is a canonical way to present **Set**-valued functors.
- But what about profunctors?

- To compute with categories we need syntax.
- There is a canonical way to present small categories by generators and relations (and morphisms between them).
- There is a canonical way to present **Set**-valued functors.
- But what about profunctors?

A profunctor $\mathcal{P}:\mathcal{C}\twoheadrightarrow\mathcal{D}$ is either

$$\mathcal{C}^{\mathsf{op}} imes \mathcal{D} o \mathbf{Set} \qquad \mathsf{or} \qquad \mathcal{C}^{\mathsf{op}} o \mathbf{Set}^{\mathcal{D}}$$

but, surprisingly, the syntactic notions suggested by these alternatives are not equivalent. This is the subtlety that we explore in this work.

- To compute with categories we need syntax.
- There is a canonical way to present small categories by generators and relations (and morphisms between them).
- There is a canonical way to present **Set**-valued functors.
- But what about profunctors?

A profunctor $\mathcal{P}:\mathcal{C}\twoheadrightarrow\mathcal{D}$ is either

$$\mathcal{C}^{\mathsf{op}} imes \mathcal{D} o \mathbf{Set} \qquad \mathsf{or} \qquad \mathcal{C}^{\mathsf{op}} o \mathbf{Set}^{\mathcal{D}}$$

but, surprisingly, the syntactic notions suggested by these alternatives are not equivalent. This is the subtlety that we explore in this work.

But... why would we care?

Motivation: Categorical Database Theory

Our motivation comes from a **categorical data model** based on the following idea:

Database Schema	\longleftrightarrow	Category
Database Instance	\longleftrightarrow	Copresheaf

...every theorem about small categories becomes a theorem about databases. [Spi12]

Motivation: Categorical Database Theory

Our motivation comes from a **categorical data model** based on the following idea:

Database Schema	\longleftrightarrow	Category
Database Instance	\longleftrightarrow	Copresheaf

...every theorem about small categories becomes a theorem about databases. [Spi12]

Remark: This data model (as presented in e.g. [Spi12]) has been superseded by another which incorporates data types and attributes [Sch+17], but the subtlety we are interested in arises already at this level.

Motivation: Categorical Database Theory

Our motivation comes from a **categorical data model** based on the following idea:

Database Schema	\longleftrightarrow	Category
Database Instance	\longleftrightarrow	Copresheaf

...every theorem about small categories becomes a theorem about databases. [Spi12]

Remark: This data model (as presented in e.g. [Spi12]) has been superseded by another which incorporates data types and attributes [Sch+17], but the subtlety we are interested in arises already at this level.

So, how does this work?

A category presentation consists of objects (a.k.a. "sorts"), generating arrows (a.k.a. "function symbols") and equations between parallel paths.

A category presentation consists of objects (a.k.a. "sorts"), generating arrows (a.k.a. "function symbols") and equations between parallel paths.

A category presentation consists of objects (a.k.a. "sorts"), generating arrows (a.k.a. "function symbols") and equations between parallel paths.

Example:

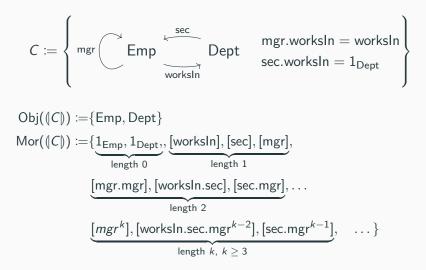
The dots represent the associative concatenation of paths.

C presents the category (C) ("the semantics of *C*") whose morphisms are the paths in *C* quotiented by the **provable equality** relation \approx_C generated by the equations.

Explicitly, \approx_C is the smallest equivalence relation that contains all the equations of C which is compatible with concatenation of paths $(p \approx_C q \text{ implies } f.p.g \approx_C f.q.g$ whenever the expression makes sense).

We write [p] for the equivalence class of p.

In the example, we get:



A morphism of category presentations $F : C \rightarrow D$ is an assignment on objects together with an assignment from generating arrows to paths in the target presentation.

A morphism of category presentations $F : C \rightarrow D$ is an assignment on objects together with an assignment from generating arrows to paths in the target presentation.

A morphism of category presentations $F : C \rightarrow D$ is an assignment on objects together with an assignment from generating arrows to paths in the target presentation.

A morphism of category presentations $F : C \rightarrow D$ is an assignment on objects together with an assignment from generating arrows to paths in the target presentation.

A morphism of category presentations $F : C \rightarrow D$ is an assignment on objects together with an assignment from generating arrows to paths in the target presentation.

Example:

We require that if $p =_C q$, then $F(p) \approx_D F(q)$:

$$\begin{split} \mathsf{mgr.worksln} =_{\mathcal{C}} \mathsf{worksln} &\leadsto \mathsf{mgr.worksln} \approx_{\mathcal{C}} \mathsf{worksln} \checkmark \\ \mathsf{sec.worksln} =_{\mathcal{C}} \mathbb{1}_{\mathsf{Dept}} \rightsquigarrow (\mathsf{sec.mgr}).\mathsf{worksln} \approx_{\mathcal{C}} \mathsf{sec.worksln} \approx_{\mathcal{C}} \mathbb{1}_{\mathsf{Dept}} \checkmark \end{split}$$

A morphism of category presentations $F : C \rightarrow D$ is an assignment on objects together with an assignment from generating arrows to paths in the target presentation.

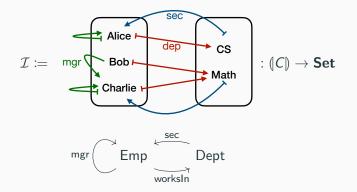
Example:

We require that if $p =_C q$, then $F(p) \approx_D F(q)$:

$$\begin{split} \mathsf{mgr.worksln} =_{\mathcal{C}} \mathsf{worksln} &\leadsto \mathsf{mgr.worksln} \approx_{\mathcal{C}} \mathsf{worksln} \checkmark \\ \mathsf{sec.worksln} =_{\mathcal{C}} \mathbb{1}_{\mathsf{Dept}} \rightsquigarrow (\mathsf{sec.mgr}).\mathsf{worksln} \approx_{\mathcal{C}} \mathsf{sec.worksln} \approx_{\mathcal{C}} \mathbb{1}_{\mathsf{Dept}} \checkmark \end{split}$$

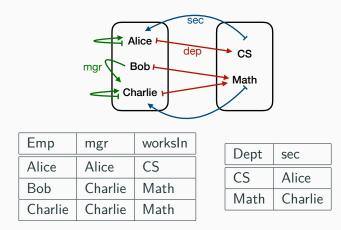
In this way we obtain a category CatPr and a semantics functor $(\!(-)\!):CatPr \rightarrow Cat.$

To understand this as a database schema, let us look at an example copresheaf \mathcal{I} on (\mathcal{C}) , which is determined by its action on objects and on the generating arrows:



$\textbf{DB Instance} \longleftrightarrow \textbf{Copresheaf}$

When we visualize with tables, we see that each object c corresponds to a table and each function symbol in C going out of c corresponds to a column in that table:



DB Instance \longleftrightarrow Copresheaf

From now on we will use the words "instance" and "copresheaf" interchangeably.

We can go further and define instance presentations similarly to presentations for actions of monoids/groups, e.g.

DB Instance \longleftrightarrow Copresheaf

From now on we will use the words "instance" and "copresheaf" interchangeably.

We can go further and define instance presentations similarly to presentations for actions of monoids/groups, e.g.

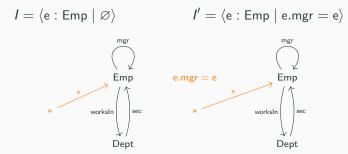
This presents the infinite copresheaf $(I) : (C) \rightarrow \mathbf{Set}$ given by

Emp	mgr	worksIn
[e]	[e.mgr]	[e.worksIn]
[e.mgr]	[e.mgr ²]	[e.worksIn]
		[e.worksIn]
[e.worksIn.sec]	[e.worksIn.sec.mgr]	[e.worksIn]
[e.worksIn.sec.mgr]	[e.worksln.sec.mgr ²]	[e.worksIn]
		[e.worksIn]

Dept	sec
[e.worksIn]	[e.worksIn.sec]
[e.worksIn]	[e.worksIn.sec]

DB Instance \longleftrightarrow Copresheaf

Formally we define an **instance presentation** on C to be a category presentation extending C with a unique object *, new arrows coming out of *, and some equations involving the newly added arrows, e.g.



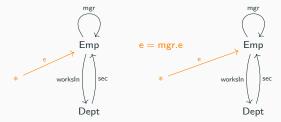
A morphism of instance presentations $C \phi : I \to J$ is an assignment of generators $x : * \to c$ in I to paths $y_1 \dots y_n : * \to c$ in D such that equations in I are respected.

DB Queries \longleftrightarrow Mapping out of Instances?

A data model should also say how to *manipulate* the data. We will consider a finitely presented instance as a conjunctive query, using it to query other instances by mapping into them.

DB Queries \longleftrightarrow Mapping out of Instances?

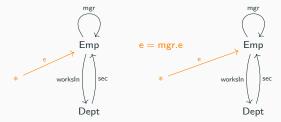
A data model should also say how to *manipulate* the data. We will consider a finitely presented instance as a conjunctive query, using it to query other instances by mapping into them.



I presents a representable on Emp: Set^{((C)}((*I*)), *J*) ≃ *J*(Emp) (i.e. representables are the free (co)presheaves on one generator).

DB Queries \longleftrightarrow Mapping out of Instances?

A data model should also say how to *manipulate* the data. We will consider a finitely presented instance as a conjunctive query, using it to query other instances by mapping into them.



- I presents a representable on Emp: Set^{((C)}(((I)), J) ≃ J(Emp)) (i.e. representables are the free (co)presheaves on one generator).
- Set^(C)(((I')), J) is the set of employees in J who are their own managers.

This is nice for basic querying, but it's not expressive enough if instead of a set of answers, we actually want to produce a new instance (e.g. implement data migration).

This is nice for basic querying, but it's not expressive enough if instead of a set of answers, we actually want to produce a new instance (e.g. implement data migration).

Profunctors let us query and transform in more complex ways: given a profunctor $\mathcal{P} : \mathcal{C} \twoheadrightarrow \mathcal{D}$ seen as $\mathcal{P} : \mathcal{C}^{op} \to \mathbf{Set}^{\mathcal{D}}$, define

$$\mathsf{Eval}_{\mathcal{P}}: \mathbf{Set}^{\mathcal{D}} o \mathbf{Set}^{\mathcal{C}}$$

 $\mathsf{Eval}_{\mathcal{P}}(\mathcal{J}) \coloneqq \mathbf{Set}^{\mathcal{D}}(\mathcal{P}(-), \mathcal{J})$

This contains the previous situation as a particular case by setting C = 1, since a profunctor $1 \rightarrow D$ is simply a copresheaf on D.

Composing Queries

Moreover it is crucial to be able to compose queries before evaluating them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

$$\mathcal{C} \xrightarrow{\mathcal{P}} \mathcal{D} \xrightarrow{\mathcal{Q}} \mathcal{E} \longrightarrow \mathcal{C} \xrightarrow{\mathcal{P} \odot \mathcal{Q}} \mathcal{E}$$

 $(\mathcal{P} \odot \mathcal{Q})(c, e) \cong \int^{d \in \mathcal{D}} \mathcal{P}(c, d) \times \mathcal{Q}(d, e).$

Profunctor composition implements composition of queries, because

$$\mathsf{Eval}_{\mathcal{P}} \circ \mathsf{Eval}_{\mathcal{Q}} \cong \mathsf{Eval}_{\mathcal{P} \odot \mathcal{Q}}.$$

Composing Queries

Moreover it is crucial to be able to compose queries before evaluating them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

$$\mathcal{C} \xrightarrow{\mathcal{P}} \mathcal{D} \xrightarrow{\mathcal{Q}} \mathcal{E} \longrightarrow \mathcal{C} \xrightarrow{\mathcal{P} \odot \mathcal{Q}} \mathcal{E}$$

 $(\mathcal{P} \odot \mathcal{Q})(c, e) \cong \int^{d \in \mathcal{D}} \mathcal{P}(c, d) \times \mathcal{Q}(d, e).$

Profunctor composition implements composition of queries, because

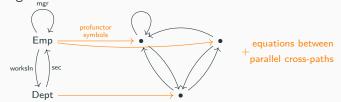
$$\mathsf{Eval}_{\mathcal{P}} \circ \mathsf{Eval}_{\mathcal{Q}} \cong \mathsf{Eval}_{\mathcal{P} \odot \mathcal{Q}}.$$

Examples are much easier with presentations, so let's get to that first.

Profunctor Presentations

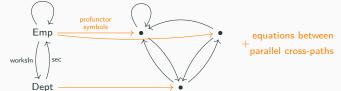
Uncurried Profunctor Presentations

Since instances on a category C are profunctors $\mathbf{1} \rightarrow C$, we can start from instance presentations and generalise. An **uncurried profunc-tor presentation** $C \rightarrow D$ is a category presentation simultaneously extending C and D:



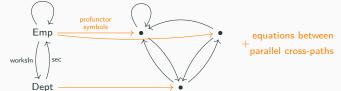
Uncurried Profunctor Presentations

Since instances on a category C are profunctors $\mathbf{1} \rightarrow C$, we can start from instance presentations and generalise. An **uncurried profunctor presentation** $C \rightarrow D$ is a category presentation simultaneously extending C and D:



This notion turns out to be equivalent to $(C^{op} \times D)$ -instance presentations.

Since instances on a category C are profunctors $\mathbf{1} \rightarrow C$, we can start from instance presentations and generalise. An **uncurried profunctor presentation** $C \rightarrow D$ is a category presentation simultaneously extending C and D:



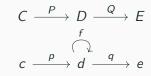
This notion turns out to be equivalent to $(C^{op} \times D)$ -instance presentations.

By defining morphisms of uncurried presentations in a straightforward way, we obtain a category UnCurr(C, D) and a semantics functor (-) : $UnCurr(C, D) \rightarrow Prof((C), (D))$.

Theorem: The class of finitely uncurried presentable profunctors is not closed under composition.

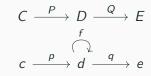
Theorem: The class of finitely uncurried presentable profunctors is not closed under composition.

Proof: consider the following presentations (with no equations):



Theorem: The class of finitely uncurried presentable profunctors is not closed under composition.

Proof: consider the following presentations (with no equations):



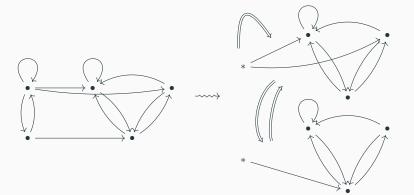
Theorem: The class of finitely uncurried presentable profunctors is not closed under composition.

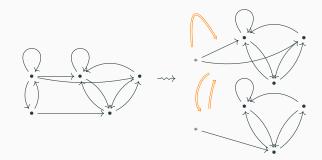
Proof: consider the following presentations (with no equations):

But any uncurried presentation $R : C \to E$ such that (R)(c, e) is infinite must have an infinite number of generating profunctor symbols. \Box

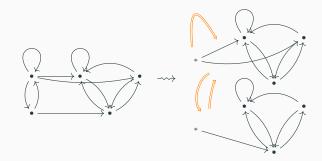
Recall that semantically, $CAT(\mathcal{C}^{op} \times \mathcal{D}, Set) \simeq CAT(\mathcal{C}^{op}, Set^{\mathcal{D}}).$

Recall that semantically, $CAT(\mathcal{C}^{op} \times \mathcal{D}, Set) \simeq CAT(\mathcal{C}^{op}, Set^{\mathcal{D}})$. Solution: move from (C, D)-uncurried presentations to C^{op} -indexed families of D-instance presentations, with morphisms between them.





The morphisms of instance presentations, when composed with each other, must satisfy the equations of C in a suitable sense (up to provable equality). We call these **curried profunctor presenta-tions**.



The morphisms of instance presentations, when composed with each other, must satisfy the equations of C in a suitable sense (up to provable equality). We call these **curried profunctor presenta-tions**.

Morphisms are defined in a straightforward way. We obtain a category $\mathbf{Curr}(C, D)$ with semantics $(-) : \mathbf{Curr}(C, D) \to \mathbf{Prof}((C), (D)).$

Syntactic Composition of Curried Presentations

Given curried profunctor presentations $P : C \to D$ and $Q : D \to E$, there is a **composite curried presentation** $P \circledast Q : C \to E$. This is obtained by following an algorithm known as *sub-query unnesting* or *view unfolding* (as sketched for instance in [SW17]).

Syntactic Composition of Curried Presentations

Given curried profunctor presentations $P: C \to D$ and $Q: D \to E$, there is a **composite curried presentation** $P \circledast Q: C \to E$. This is obtained by following an algorithm known as *sub-query unnesting* or *view unfolding* (as sketched for instance in [SW17]).

Importantly, $P \circledast Q$ is finite if both P and Q are.

Given curried profunctor presentations $P : C \to D$ and $Q : D \to E$, there is a **composite curried presentation** $P \circledast Q : C \to E$. This is obtained by following an algorithm known as *sub-query unnesting* or *view unfolding* (as sketched for instance in [SW17]).

Importantly, $P \circledast Q$ is finite if both P and Q are.

Lemma: the construction extends to a functor

 \circledast : **Curr**(*C*, *D*) × **Curr**(*D*, *E*) \rightarrow **Curr**(*C*, *E*).

Theorem: There is a natural isomorphism

$$\mu:(\!(-)\!)\odot(\!(=)\!)\xrightarrow{\cong}(\!(-)\!)\circledast=\!)$$

i.e. \circledast is correct with respect to profunctor composition.

Given curried profunctor presentations $P : C \to D$ and $Q : D \to E$, there is a **composite curried presentation** $P \circledast Q : C \to E$. This is obtained by following an algorithm known as *sub-query unnesting* or *view unfolding* (as sketched for instance in [SW17]).

Importantly, $P \circledast Q$ is finite if both P and Q are.

Lemma: the construction extends to a functor

 \circledast : **Curr**(*C*, *D*) × **Curr**(*D*, *E*) \rightarrow **Curr**(*C*, *E*).

Theorem: There is a natural isomorphism

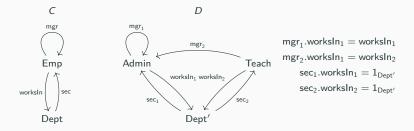
$$\mu:(\!(-)\!)\odot(\!(=)\!)\xrightarrow{\cong}(\!(-)\!)\circledast=\!)$$

i.e. \circledast is correct with respect to profunctor composition.

Corollary: the class of finitely curried presentable profunctors is closed under composition.

We explain the \circledast construction through an example.

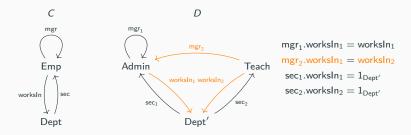
Example: consider the following two category presentations.



The equations of *C* are as before. The equations of *D* are a duplication of the ones of *C*, except for the variation $mgr_2.worksln_1 = worksln_2$.

We explain the \circledast construction through an example.

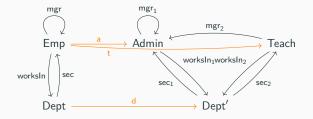
Example: consider the following two category presentations.



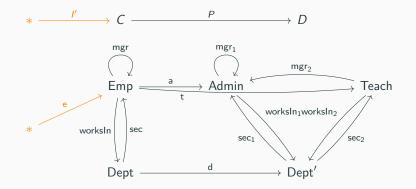
The equations of *C* are as before. The equations of *D* are a duplication of the ones of *C*, except for the variation $mgr_2.worksln_1 = worksln_2$.

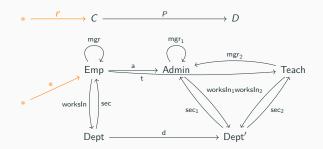
Now consider the following curried presentation $P: C \rightarrow D$:

$$\begin{split} & P(\mathsf{Emp}) \coloneqq \langle \mathsf{a} : \mathsf{Admin}, \mathsf{t} : \mathsf{Teach} \mid t.\mathsf{mgr}_2 = \mathsf{a} \\ & P(\mathsf{Dept}) \coloneqq \langle \mathsf{d} : \mathsf{Dept}' \mid \varnothing \rangle \\ & P(\mathsf{mgr}) \coloneqq \{ \mathsf{a} \mapsto \mathsf{a}.\mathsf{mgr}_1, \mathsf{t} \mapsto \mathsf{t} \} \\ & P(\mathsf{sec}) \coloneqq \{ \mathsf{a} \mapsto \mathsf{d}.\mathsf{sec}_1, \mathsf{t} \mapsto \mathsf{d}.\mathsf{sec}_2 \} \\ & P(\mathsf{worksln}) \coloneqq \{ \mathsf{d} \mapsto \mathsf{a}.\mathsf{worksln}_1 \} \end{split}$$

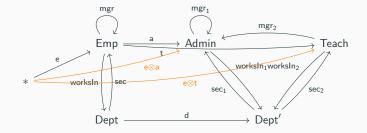


Recall the instance presentation $I' = \langle e : Emp | e.mgr = e \rangle$ from the introduction, seen as a curried profunctor presentation $* \rightarrow C$. Diagrammatically, the situation is this:



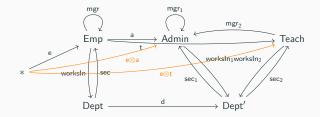


To obtain the composite $I' \circledast P : * \to D$, we must define a unique *D*-instance presentation $(I' \circledast P)(*)$. To do it, look at all pairs of "composable" generators and pair them into new symbols.



To obtain the composite $l' \circledast P : * \to D$, we must define a unique *D*-instance presentation $(l' \circledast P)(*)$. To do it, look at all pairs of "composable" generators and pair them into new symbols.

We obtain generators $e \otimes a$: Admin and $e \otimes t$: Teach.

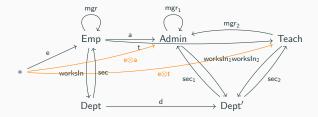


Then, to obtain the equations of the instance we take all equations from I'(*), P(Emp) and P(Dept) and "tensor them" on the left and on the right all possible generators:

$$\mathsf{e}.\mathsf{mgr} = \mathsf{e} \rightsquigarrow (\mathsf{e}.\mathsf{mgr}) \otimes \mathsf{a} = \mathsf{e} \otimes \mathsf{a} \qquad \rightsquigarrow \mathsf{e} \otimes \mathsf{a}.\mathsf{mgr}_1 = \mathsf{e} \otimes \mathsf{a}$$

$$e.mgr = e \rightsquigarrow (e.mgr) \otimes t = e \otimes t \qquad \qquad \rightsquigarrow e \otimes t = e \otimes t$$

 $\mathsf{t}.\mathsf{mgr}_2 = \mathsf{a} \rightsquigarrow \mathsf{e} \otimes (\mathsf{t}.\mathsf{mgr}_2) = \mathsf{e} \otimes \mathsf{a} \quad \rightsquigarrow (\mathsf{e} \otimes \mathsf{t}).\mathsf{mgr}_2 = \mathsf{e} \otimes \mathsf{a}$

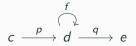


Since there are no arrow symbols in the domain presentation, we are done. $I' \circledast P$ is the conjunctive query I' migrated along P, given by the instance

 $\langle e \otimes a : Admin, e \otimes t : Teach \mid (e \otimes a).mgr_1 = e \otimes a, (e \otimes t).mgr_2 = e \otimes a \rangle.$

In other words, it looks for all pairs of an admin A and a teacher T such that the manager of T is A and A is their own manager.

So... What failed here?



• We want to guarantee the existence of a finite set of generators for the composite.

- We want to guarantee the existence of a finite set of generators for the composite.
- In the definition of ⊛, we did this by pairing generators from
 P and *Q* into generators of the form *p* ⊗ *q*.

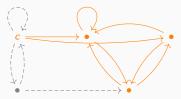
- We want to guarantee the existence of a finite set of generators for the composite.
- In the definition of ⊛, we did this by pairing generators from
 P and *Q* into generators of the form *p* ⊗ *q*.
- This worked because Q contains instance presentation morphisms Q(f) for each f in D, which give you the information to turn a cross-path f.q into some path Q(f)(q) ≡ q.h₁....h_ℓ starting with a profunctor symbol of Q.

- We want to guarantee the existence of a finite set of generators for the composite.
- In the definition of ⊛, we did this by pairing generators from
 P and *Q* into generators of the form *p* ⊗ *q*.
- This worked because Q contains instance presentation morphisms Q(f) for each f in D, which give you the information to turn a cross-path f.q into some path Q(f)(q) ≡ q.h₁....h_ℓ starting with a profunctor symbol of Q.
- Given an uncurried presentation Q, we don't have the morphisms Q(f) anymore, but can still require that every cross-path in Q can be rewritten to start with a profunctor symbol. In this case we say that Q is non-generative.

It turns out that we need another condition, so that the amount of *equations* in the composite is finite.

It turns out that we need another condition, so that the amount of *equations* in the composite is finite.

Given $c \in C$ let P^c denote the *D*-instance presentation obtained by "restriction":



It turns out that we need another condition, so that the amount of *equations* in the composite is finite.

Given $c \in C$ let P^c denote the *D*-instance presentation obtained by "restriction":



Suppose that for every pair of paths t, t' in P^c starting at c, if $t \approx_P t'$, then $t \approx_{P^c} t'$. (i.e. P is a conservative extension of P^c in the sense of algebraic theories.) If this happens for all $c \in C$, we say that P is **conservative**.

It turns out that we need another condition, so that the amount of *equations* in the composite is finite.

Given $c \in C$ let P^c denote the *D*-instance presentation obtained by "restriction":

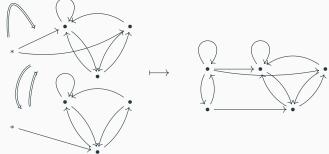


Suppose that for every pair of paths t, t' in P^c starting at c, if $t \approx_P t'$, then $t \approx_{P^c} t'$. (i.e. P is a conservative extension of P^c in the sense of algebraic theories.) If this happens for all $c \in C$, we say that P is **conservative**.

P is said to be **curryable** if it is conservative and nongenerative.

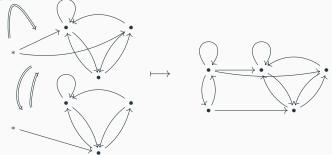
Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we begin by observing the existence of a straightforward uncurrying operation.



Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we begin by observing the existence of a straightforward uncurrying operation.



Thm: this construction determines a functor $\overline{(-)}$: **Curr** $(C, D) \rightarrow$ **UnCurr**(C, D) which restricts to finite presentations and preserves the semantics. Let Crble(C, D) be the non-full subcategory of UnCurr(C, D) spanned by curryable presentations and morphisms that send all cross-paths to right paths (*).

Theorem: The functor $\overline{(-)}$: **Curr**(*C*, *D*) \rightarrow **UnCurr**(*C*, *D*) correstricts to an equivalence of categories

$$\overline{(-)}: \mathbf{Curr}(C, D) \xrightarrow{\simeq} \mathbf{Crble}(C, D).$$

This equivalence restricts to an equivalence between the subcategories of finite presentations.

Remark: The technical condition (*) can be dropped by weakening equivalence to biequivalence (where the 2-cells of **Curr**(*C*, *D*) and **UnCurr**(*C*, *D*) are given by provable equality of presentations).

Thank you!

- [Sch+17] Patrick Schultz et al. "Algebraic Databases". Theory and Applications of Categories 32.16 (2017), pp. 547–619.
- [Spi12] David I Spivak. "Functorial data migration". Information and Computation 217 (2012), pp. 31–51.
- [SW17] Patrick Schultz and Ryan Wisnesky. "Algebraic data integration". Journal of Functional Programming 27 (2017).